Российские ученые предложили проект добычи тепла из сверхгорячих пород на глубине 10–25 км. Достичь таких уровней предполагают с помощью технологии бурения миллиметровым излучением. Ее испытали, испарив гранит с помощью источника в 10 КВт. Расчеты показали, что при мощности 1 МВт скорость бурения твердых горных пород достигнет нескольких метров в час. Технология также будет востребована в геологоразведке, строительстве и в других сферах, полагают эксперты.
Экологически чистый источник энергииРоссийские разработки помогут обеспечить людей неисчерпаемым запасом экологически чистой энергии в любой точке планеты. Такой проект представили ученые в Институте теплофизики имени С.С. Кутателадзе СО РАН и Института прикладной физики имени А.В. Гапонова-Грехова РАН.
Они предложили технологию добычи тепла из сверхгорячих пород, которые расположены в недрах Земли на глубине 10–25 км. На этом уровне температура достигает 400–450 °C.
— Геотермальная энергетика использует тепло земных недр. У этого направления две ветви. Первая — использование подземных горячих воды и пара, но их запасы ограничены. Вторая задействует тепло глубинных сухих горных пород. Концепцию их разработки предложил еще Циолковский. Он же провел начальные расчеты, — рассказал «Известиям» научный руководитель ИТФ СО РАН академик Сергей Алексеенко.
В мире опыты по извлечению такой энергии осуществили в 1970-х годах, добавил ученый. Станции для этих целей устроены в виде комплекса скважин. В одни закачивают воду. Она проходит по трещинам горячих пород, нагревается и выходит через другие в виде горячего пара. Его энергию преобразуют в электричество или тепло.
Однако классические методы глубокого бурения дороги. Например, создание 5-километровой скважины обходится в $5 тыс. за метр. Поэтому проекты добычи тепла горячих пород ограничиваются лишь опытными станциями, сообщил академик.
Как излучение поможет достичь недр ЗемлиТем не менее направление может получить второе дыхание благодаря инновационной технологии сверхглубокого бурения с помощью миллиметровых волн, сообщили ученые. Генераторы такого излучения называются гиротронами. Их, в частности, используют в термоядерных реакторах для нагрева плазмы.
— В мире ищут бюджетные способы бурения. СВЧ-излучение в миллиметровом диапазоне волн может быть перспективным, потому что оно хорошо распространяется по волноводам и не теряет мощности на больших расстояниях, — поделился доктор физико-математических наук, заведующий отделом физики плазмы ИПФ РАН Александр Водопьянов.
В США уже запустили стартап, который проводит натурные эксперименты в этом направлении, добавил он. В компании обещают выдать электроэнергию в сеть через несколько лет.
В России работу над этой технологией начали в прошлом году. Преимущество отечественных ученых — в компетенциях по созданию метаваттных гиротронов. Кроме того, в стране уже накоплен значительный опыт исследований взаимодействия СВЧ-излучения с различными материалами и разработки систем передачи высокомощных сигналов.
— В марте этого года мы приступили к испытаниям по испарению гранитов и базальтов. Они составляют основу земной коры и имеют самую высокую температуру испарения. Также мы изучаем каналы теплопотерь и прорабатываем разные способы удаления испаряемого вещества. Уже сейчас есть основания полагать, что СВЧ-бурение будет быстрее и дешевле, чем традиционные способы, — сообщил Александр Водопьянов.
По его словам, в эксперименте породы испаряли источником в 10 кВт. Вместе с тем оценки показали, что при мощности в 1 МВт скорость бурения составит несколько метров в час.
Как пояснил Сергей Алексеенко, в предложенной технологии первый участок скважины проходят обычным буром. Затем в нее опускают волновод, по которому подается СВЧ-излучение, испаряющее гранит или базальт на забое. Образующиеся пары выводят вверх по кольцевому каналу с помощью продувки инертным газом, например аргоном. При этом часть испаренного материала оседает на стенках и формирует стекловидную пленку, предотвращающую утечки теплоносителя через возможные трещины. По расчетам, такая схема как минимум в пять раз дешевле традиционного бурения сверхглубоких скважин.
Академик отметил, что, по оценкам европейских специалистов, на территории России сверхнагретые породы наиболее доступны на Камчатке, в Магаданской области, в районах Байкала и Тувы. Здесь они расположены примерно на глубине 10 км. По расчетам ученых, разработка всего 1% таких запасов способна обеспечить страну энергией на полвека.
Произведет ли новая технология революцию в энергетике— Освоение такой технологии может стать настоящим прорывом в области бурения, сопоставимым с переходом от традиционных инструментов к твердосплавным, а затем и алмазным, — отметил в беседе с «Известиями» проректор по научной работе Уральского государственного горного университета Денис Симисинов. — Это позволит работать на значительно больших глубинах и эффективно бурить в сложных геологических условиях, где главным ограничением становится износ инструмента.
Для реализации проекта нужен широкий круг экспертов — от геологов и теплофизиков до экономистов, — которые проведут изыскания и проверят рентабельность, пояснил он.
— Идея интересна, но как доставить источник излучения к месту добычи и как передать на него энергию? Кроме того, в процессе бурения основное значение имеет устойчивость ствола и технологии удаления продуктов разрушения. С этим связаны наибольшие затраты и аварийность, — отметил профессор кафедры горных машин и комплексов УГГУ Константин Порожский.
Вместе с тем надо изучить, безопасно ли человеку работать рядом с источником или стоит перейти к роботизации, добавил ученый.
— Перспективность таких технологий напрямую зависит от их окупаемости. Поэтому экономические расчеты необходимо проводить на нескольких типовых объектах — с разной тектоникой, геологическим строением и расстоянием до потенциальных потребителей энергии, — пояснила «Известиям» ведущий инженер лаборатории механики горных пород МФТИ Тамара Журавлева.
По ее словам, одна из российских компаний изучала тему СВЧ-бурения для разработки нефтяных месторождений баженовской свиты (группа нефтематеринских пород) в Западной Сибири. Однако экономика оказалась не в пользу проекта.
— Вопросов действительно много. Во-первых, глубины в 10–25 км — это экстремальные значения, и пока не ясно, удастся ли разработать технологии и материалы, способные работать в таких условиях. Во-вторых, даже бурение на 2–3 км уже относят к дорогостоящим операциям, а здесь речь идет о скважинах в разы глубже. Тем не менее, если эти задачи удастся решить, человечество получит доступ к практически неисчерпаемому источнику энергии, — полагает доцент Научно-образовательного центра им. И.Н. Бутакова ТПУ Станислав Янковский.
По словам эксперта, хотя сама концепция выглядит почти фантастической, результаты первых испытаний вселяют определенный оптимизм.